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Abstract

A bubbly flow experiment has been performed in a horizontal channel in order to simulate the dynamical
effects of the nucleation of bubbles and their departure from the wall in boiling flows. Bubbles were injected
through a porous plate located on the lower wall. The void fraction, bubble velocity and diameter were
measured with a fibre-optic probe and the liquid flow in the bubble layer was studied with a hot film
anemometer. The void fraction profiles are nearly self-similar. The expansion of the bubble layer is quasi-
linear with the distance downstream, with a rate of expansion depending on the bubble diameter. Com-
parison with a simple model of bubble trajectories highlights the role of the lift force in the development of
the bubble layer. The mean velocity in the bubble layer does not differ greatly from that measured in single-
phase flow, except near the wall. The velocity profiles follow a logarithmic law similar to that for turbulent
flow over a rough surface suggesting that bubbles attached to the wall act as roughness elements on the
liquid flow. The turbulent kinetic energy is greater than in single-phase flow. The additional turbulence is
analysed and attributed partly to the relative motion of the bubbles and partly to the augmentation of the
turbulent shear stress in the bubble layer. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Two-phase bubbly flows are present in many practical situations in the thermal, nuclear and
chemical industries. Numerical simulation of bubbly flows is often used for the design and the
optimisation of industrial devices. The numerical prediction of two-phase bubbly flows requires a
careful choice of the boundary conditions on the wall, and the wall region of bubbly flows has
therefore been a topic of much interest during the last decade.
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It is now well known that wall momentum transfers are deeply linked to the spatial distribution
of bubbles. Most of the studies of bubbly flows have been carried out in vertical pipes, with
bubbles injected at the inlet section.
In upward vertical bubbly flows in pipes, the bubble drift and the vorticity of the liquid

flow induced by the presence of the wall lead to a migration of small bubbles towards the wall
(Serizawa et al., 1975; Nakoryakov et al., 1981; Zun, 1988; Liu and Bankoff, 1993). There is a
void fraction peak near the wall, with a maximum located at about one bubble diameter from
the wall. The presence of bubbles near the wall leads to an increase in the longitudinal liquid
velocity with void fraction, due to the effect of buoyancy. The longitudinal velocity profile of
the liquid is consequently flatter than in single-phase flow. This is consistent with the observed
increase of the wall shear stress (Mari�ee, 1987). Under these conditions, for low liquid velocity
and far from the bubble-to-slug transition, the logarithmic wall law for the longitudinal mean
velocity of the liquid is still valid (Sato et al., 1981). Moursali et al. (1995) studied a turbulent
boundary layer developing on a vertical flat plate in the presence of millimetric bubbles and
showed that the slope of the logarithmic law tends to decrease when the peak of void fraction
is located in the logarithmic region. This supports the idea of Mari�ee et al. (1997): the change
in the slope is closely linked to the void fraction peaking phenomenon. In vertical upward
bubbly flows, the void migration towards the wall causes changes in the turbulence structure.
In cases of liquid flows at low velocity, the turbulent shear stress near the wall is greater than
in single-phase flow and the energy of the fluctuating motion of the liquid is intensified by the
relative bubble motion. However, the production of turbulent kinetic energy by the mean
velocity gradients and the turbulent shear stress is not really changed in the logarithmic layer
(Moursali et al., 1995). For higher liquid velocities, the liquid fluctuating velocity decreases:
this is not yet completely understood (Mari�ee, 1987; Herringe and Davis, 1976; Serizawa and
Kataoka, 1990).
In vertical downward bubbly pipe flows, a migration of the bubbles towards the pipe axis is

observed (Wang, 1985; Nakoryakov et al., 1996). This leads to a decrease of the longitudinal mean
velocity of the liquid near the pipe centre. As a consequence, the longitudinal liquid velocity
profiles are also flatter than in single-phase flow and the wall shear stress is greater than in single-
phase flow. However, the bubbles are almost absent in the near-wall region: the logarithmic law
and its slope therefore remain unchanged (Nakoryakov and Kashinski, 1995). The same behav-
iour of the fluctuating velocities of the liquid is observed in a downward bubbly pipe flow as in
an upward flow.
Micro-gravity bubbly flows in pipes have also been studied to analyse the effect of gravity on

the void fraction distribution and the flow dynamics (Kamp, 1996). In the liquid phase, neither the
mean velocity distribution nor the wall shear stress is modified.
In all these studies, bubbles are injected at the inlet section of the pipe. They may lie close to the

wall, as in vertical upward flow, but they are absent from the viscous sub-layer.
In the case of bubble nucleation on the wall, the structure of the liquid flow is expected to

change drastically. Moreover, there is in this case a longitudinal evolution of the gas flow rate,
which makes the flow more complex to study. Such experiments are somewhat difficult to per-
form: bubbles may be either injected on the wall or nucleated by the boiling process so that the
measurements near the wall are difficult to perform. As a consequence, very few experiments have
been reported.
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The effect of injection of bubbles at the wall of a horizontal channel has been investigated by
Madavan et al. (1984, 1985). The injection of micro-bubbles through a porous plate flush-
mounted on the wall leads to a decrease of the wall shear stress. However, the measurements were
performed downstream of the injection zone and not above the porous plate, which limits the
interpretation of the results.
Velidandla et al. (1995) performed laser Doppler anemometer (LDA) measurements in an

upward vertical flow of R113 heated at the internal wall of an annular duct. Their results show
that both the logarithmic law and the turbulent kinetic energy profiles are drastically different
from those in single-phase flow. However, it is difficult to say whether the wall momentum
transfer was modified in their experiment by thermal buoyancy or by bubble drift. By comparison
with an isothermal single-phase flow, the wall heat transfer leads to a decrease of the wall shear
stress whereas the bubble drift leads to an increase.
To understand the modification of the momentum transfer at the wall by nucleation, growth

and bubble departure, an isothermal turbulent water flow in a horizontal rectangular channel,
with bubbles injected at the lower wall, is investigated in the present paper. This experiment
highlights some of the dynamic effects encountered in boiling flow with high void fraction and
sub-millimetric bubbles.
The experimental facility and the operating conditions are presented in Section 2. The mea-

suring techniques – dual fibre-optic probe for the characterisation of the gas phase and hot film
anemometer for the investigation of the kinematic structure of the liquid flow – are described in
Sections 3 and 4. An overview of the experimental results is given in Section 5. These results are
then discussed in Section 6 with a special attention paid to the development of the bubble layer
and to the modification of the structure of the mean and turbulent flow in the liquid.

2. Experimental setup and operating conditions

The experimental facility (Fig. 1) consisted of a water loop made of a free surface reservoir, a
centrifugal pump, a control valve, a heat exchanger, 25 and 5 lm filters, a diverging–converging
section with a honeycomb and a rectangular channel. The horizontal channel was 200 mm wide,
25 mm high and 4 m long. An 8:1 aspect ratio was chosen to obtain a spanwise homogeneous
flow. Measurements were performed 1420 mm downstream of the channel’s entrance section. In
the present experiment, the liquid superficial velocity, jL, was kept constant and equal to 1.16 m/s.
The corresponding Reynolds number Re based on the hydraulic diameter was 51 500.
In order to mimic the dynamic aspects of a boiling flow, air was injected through a porous

plate. A sintered Inconel 600 porous plate (class 05) 180 mm wide, 205 mm long and 7 mm thick
was flush-mounted at the lower wall of the channel. The volumetric porosity of the plate was
between 25% and 30%. The air flow rate was measured by a rotameter and controlled by a
manometer. The porous plate started 1390 mm downstream from the inlet. Above the plate, the
characteristic of the turbulent liquid flow was checked: the flow was fully developed and homo-
geneous in the central part of the channel in the spanwise direction. The mean and RMS
streamwise velocities of the water flow over the plate were measured with an LDA. They show
good agreement with the measurements of Hussain and Reynolds (1975). In particular, they show
that, at this Reynolds number, the porous plate behaves as a smooth wall.
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To investigate the influence of the bubble layer development, two-phase flow measurements
were performed in three different cross-sections (a, b and c), located, respectively, at 31, 93 and
155 mm from the upstream edge of the porous plate (Fig. 1). The homogeneity of the air flux was
carefully checked in the absence of liquid flow. The air injection was characterised by the volu-
metric flux jG across the porous plate, defined as the flow rate per unit surface. The choice of
jG had to satisfy two conflicting conditions:

1. the density of bubbles nucleating at the wall had to be homogeneous;
2. the void fraction had to be moderate, for the liquid velocities to be measured and for the inter-
action of the bubble layer with the upper wall of the channel to be weak.

jG has to be high enough to satisfy the first condition, but not too high in order not to violate the
second condition. The experiments were carried out with three different air fluxes: 2, 5 and 10 mm/
s. When jG ¼ 10 mm=s, the bubble layer reached the top of the channel in the downstream
measurement section.
Although the global conditions of air injection (pressure drop across the porous plate, flow

rate) were carefully controlled, there is no reason to believe that the injection sites remain the
same. However, the repeatability of local void fraction and liquid velocity distributions was
checked for all operating conditions and was found acceptable (Gabillet, 1998).
Intrusive probes were introduced into the channel in the different measurement sections

through the upper wall. The vertical displacement of the probes was controlled with an accuracy
of 10 lm by a micrometer screw. Its position with respect to the porous wall (y ¼ 0) was de-
termined in single-phase flow by fitting the mean velocity profile of the liquid by the logarithmic
law, the friction velocity u� being determined from the pressure drop obtained from nine pres-
sure taps along the channel. This adjustment leads to an uncertainty of 0.2 mm for the probe
location.

Fig. 1. Experimental setup and location of the measuring test sections.
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3. Measurement of void fraction, bubble diameter and velocity

3.1. Optical probes

A dual fibre-optic probe was designed especially for this experiment and built by RBI. It
consists of two fibres. Each fibre has a diameter of 50 lm and a cone-shaped tip of 15 lm. The
distance l12 between the two tips is 430� 40 lm, comparable to the typical bubble diameter. This
choice is a compromise between a good probability to detect a single bubble on the two tips and
an acceptable time delay. With this arrangement, the uncertainty in l12 leads to a relative un-
certainty of �10% for the bubble velocity measurement. The angle of inclination between the
direction of the two tips and the porous plate is smaller than 5� and can be ignored since the
induced error resulting from this misalignment is less than 1%. The probe axis is parallel to
the mean flow, for a better phase discrimination. The probe is connected to an electronic system
(RBI 9110) providing an output voltage signal between 0 and 5 V.
The spatial resolution of the probe is estimated following the results of Cartelier (1990), who

measured the response time Tr due to the dewetting of the tip at the passage of a liquid–gas in-
terface for different probes. This response time decreases when the velocity of the interface Vi
increases. For each probe, he defined a latency length L� ¼ TrVi that characterises the spatial
resolution of the probe, i.e. the minimal bubble diameter below which the bubbles are not cor-
rectly detected. For interface velocities greater than 0.3 m/s, L� is constant. According to the
results of Cartellier, the value of L� for a probe of 15 lm diameter is roughly equal to 150 lm.
Thus, the probe used in our experiments is able to detect bubbles greater than 150 lm.
Some bubbles may be deflected due to the obstruction of the probe, and the probe tip was in this

case at best only partly dewetted. When the tip pierced the bubble, the amplitude voltage of the
output signal was therefore much lower than that measured when the probe was in the gas under
static conditions. However, deflection of bubbles at the probe tips occurred mainly for small
bubbles, which contributed only weakly to the mean void fraction and to the mean gas velocity.
The sampling frequency, 100 kHz, was sufficiently high so that the velocity uncertainty was

smaller than 3%.
Bubbles were detected by using a threshold of the output voltage of the photodetector. This

threshold was chosen carefully so that the signal due the passage of small bubbles could be dis-
tinguished from noise. The void fraction and each bubble residence time were determined with a
relative accuracy of 5% at a distance of 1 mm from the porous wall. The accuracy of the longi-
tudinal mean velocity of the gas was the same.

3.2. Processing techniques for gas velocity and bubble size determination

Whenever the output voltage was greater than the threshold level, the gas characteristic
function vG was set to 1, otherwise vG was set to 0. The local gas void fraction is thus the time
average of vG. For a double optical probe, the cross-correlation function C of the two charac-
teristic functions vG;1 and vG;2 is

C ¼ 1
T

Z T�Dt

0

vG;1ðtÞvG;2ðt þ DtÞdt; ð1Þ
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where T is the measuring interval. The maximum of C corresponds to a characteristic transit time
Dtp of the bubble between the two probe tips. For a given distance between the two probes l12,
a characteristic bubble velocity UB is obtained:

UB ¼
l12
Dtp

: ð2Þ

Let us suppose that an interface is detected at the upstream tip and another is detected at the
downstream tip at a time Dt later. For the signal processing, a time interval ½tmin; tmax	 was chosen.
If Dt belongs to ½tmin; tmax	, then the two interfaces detected at the two tips are deemed to corre-
spond to the same bubble. A processing method is used to suppress the contribution of two
different bubbles found in the range ½t þ tmin; t þ tmax	 (Roig, 1993). The velocity uB of each bubble
is deduced from l12 and the bubble transit time Dt. The mean velocity UG of the gas phase is then
calculated from the velocities uB of nB bubbles pierced by the two probes, weighted by their
residence time tB over the upstream tip:

UG ¼ 1
T

XnB
i¼1

tBðiÞuBðiÞ: ð3Þ

The sensitivity of UG to the choice of the interval ½tmin; tmax	 used for data processing was checked
by Gabillet (1998) and leads to a relative accuracy of 4%. The gas RMS velocity has not been
determined, because it is too sensitive to the choice of the interval and also because the mea-
surement time (80 s) is too small to ensure convergence. Whatever the chosen time interval, the
bubble velocity distribution is found to be asymmetric with fewer low velocities. There are two
reasons for this:

• bubbles with a low velocity may be deflected and can thereby avoid the downstream probe tip,
especially near the wall, where the vertical gas velocity component may be as important as the
longitudinal component;

• the bubbles cannot have a velocity smaller than a limit value, even near the wall. Indeed they
are put in motion rather quickly. This will be discussed in Section 6.

With the velocity and the residence time of the bubble at the upstream tip, the chord length
lB of the bubble viewed by the tip can be determined:

lBðiÞ ¼ uBðiÞtBðiÞ: ð4Þ

To calculate the bubble diameter distribution from the measured chord length distribution, the
inverse method developed by Clark and Turton (1988) was used. This method enables us to
calculate the probability density function of the bubble diameters, if the flow is assumed to be
locally homogeneous over a distance greater than the bubble diameter. It requires an assumption
on the bubble shape. In our experiment bubbles were sufficiently small so that they could be
assumed spherical. This method also requires a great number of samples of the chord length
distribution. If the number of samples is too small (especially near the edge of the bubble layer),
this inverse method cumulates the errors, leading to negative values of the probability density
function of the diameter classes. To avoid this problem, Kamp (1996) assumed that the proba-
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bility density function g0 of the bubble diameters in a turbulent bubbly flow is well fitted by a log-
normal law:

g0ðdBÞ ¼
1ffiffiffiffiffiffi
2p

p
rdB
exp

"
� ðlnðdB=dmÞÞ2

2r2

#
; ð5Þ

where dm is the most probable diameter and r a parameter indicating the width of the distribution.
The determination of the probability density function of the bubble diameters is thus reduced to
the determination of two parameters dm, r. Statistics of the bubble size are then calculated from
g0. They are sensitive not only to the interval ½tmin; tmax	 but also to the number of classes of the
distribution of the diameters. Therefore the bubble RMS diameter was not calculated. The bubble
mean diameter DB is finally determined with a relative accuracy of 20%.

4. Measurement of liquid velocity

To measure the velocities of the liquid phase, the severe experimental conditions due to the
vicinity of the wall and to the high void fraction make the use of LDA inappropriate (Tjiptahardja
et al., 1996). Thus a hot film anemometer (HFA) was preferred. Demineralised water was used for
these measurements. All the experiments were performed with a superficial velocity of the liquid
phase jL equal to 1.16 m/s, corresponding to a Reynolds number Re of 51 500. In a single-phase
flow, when jL ¼ 1:16 m=s, the friction velocity u� is equal to 0.058 m/s.

4.1. Hot film probes

The system consists of a Dantec Streamline anemometer and a probe with overheat ratio fixed
at 0.08. Two different probes were used.
(1) A single boundary layer probe, Dantec 55R15, made of an insulated cylindrical hot wire of

70 lm diameter with a sensitive length of 1.25 mm was chosen to measure the longitudinal mean
and RMS velocities. Due to its size, this probe cannot detect the smallest turbulent structures.
Indeed the ratio between the probe length and the Kolmogoroff length scale may be significant:
12.5 at the channel axis and 40 at a distance of 1 mm from the porous wall for a superficial liquid
velocity jL ¼ 1:16 m=s. Nevertheless, the measurement of the mean longitudinal velocity is not
influenced by the probe size. In contrast (Fig. 2), the measurements of the longitudinal RMS

velocity

ffiffiffiffiffiffi
u02L

q
display some differences with the measurements performed by LDA and the results

of Hussain and Reynolds (1975), for yþ ¼ yu�=m < 45, i.e. y < 0:75 mm. The velocity and Rey-
nolds stress components will be scaled by the maximum velocity U0 at the channel axis, the
vertical co-ordinate y, by the half-height of the channel (h ¼ 12:5 mm).
(2) A 1249 A–10 W TSI miniature X-array probe made of two insulated cylindrical hot wires of

25 lm diameter with a sensitive length of 0.25 mm was chosen to determine the longitudinal and
vertical mean and RMS velocities as well as the turbulent shear stress. The distance between the
two wires (0.5 mm) is comparable to the integral turbulent length scale for yþ < 75 ðy=h < 0:1Þ.
Thus, the comparison with the measurements of Laufer (1951) for Re ¼ 43300 in Fig. 2 shows
that the vertical RMS velocity

ffiffiffiffiffi
v02L

q
is overestimated for y=h < 0:1. Fig. 2 also displays the
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dimensionless turbulent shear stress u0Lv
0
L=U

2
0 . It is compared to the theoretical turbulent shear

stress obtained by subtracting the viscous shear stress from the total shear stress. In a fully de-
veloped flow, the total shear stress is linear and equal to qLu

2
�ð1� y=hÞ and the viscous shear stress

is obtained from the mean velocity profile. u0Lv
0
L is drastically underestimated for yþ < 175, i.e.

y < 3 mm. In order to improve the determination of the turbulent shear stress near the wall in a
two-phase flow, the filtering of the energetic turbulent structures of the liquid is assumed to be the
same as in single-phase flow. From the measurements in single-phase flow and the theoretical
value of the turbulent shear stress, a filtering correction function is built. This function depends on
the distance from the porous wall and is calculated from the ratio of the theoretical value to the
measured value. For y=h > 0:45, this function is equal to 1; it can reach 1.6 for y=h ¼ 0:08.

4.2. Hot film measurement in a two-phase flow

Close to the porous wall, the presence of small bubbles imbedded in highly turbulent liquid
makes the discrimination between the phases difficult: a high sampling frequency (20 kHz) and a
large time for data acquisition are thus required. To our knowledge, measurements using a hot
film anemometer with bubbles of such small diameter have never been performed. Measurements
reported in the literature usually concern bubbles 5–10 times larger than in the present experi-
mental study.
During the impact of a bubble on the wire, the HFA output voltage E drops due to the small

thermal conductivity of the gas. This voltage drop must not be attributed to the velocity fluc-
tuation and has to be removed from the signal for the calculation of the mean and RMS velocities
in the liquid phase. In most previously reported experiments with bubbles a few millimetres in
diameters, the double threshold method of Liu and Bankoff (1993) is well adapted for the bubble
discrimination. These thresholds are applied on both the output voltage E and its time derivative
dE=dt. In the present experiment, since the sensitive part of the wire is longer than the bubbles, it
is never completely dewetted during their impact. The voltage drop reaches different levels, which
makes the bubble signature difficult to distinguish from the turbulence fluctuations. In order to

Fig. 2. (a) RMS velocities in single-phase flow for jL ¼ 1:16 m=s:
ffiffiffiffiffiffi
u02L

q
=U0: d lda, s hfa (single probe), _____ Hussain

and Reynolds (1975);

ffiffiffiffiffi
v02L

q
=U0: � hfa (dual probe), Laufer (1951). (b) Turbulent shear stress for jL ¼ 1:16 m=s: �

hfa (dual probe), - - - theory.
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improve the detection of the small bubbles from the HFA output voltage, the thresholds are
preferably applied to E and ðdE2=dtÞ2 (Gabillet et al., 1998; Gabillet, 1998).
A measurement time of 80 s allows the convergence of the mean and RMS values of the velocity

everywhere in the channel. Table 1 contains the relative accuracy of the velocity components for
values measured at a distance of 2 mm from the porous wall. The accuracy takes into account the
probe calibration and the bubble discrimination on the HFA output signal.

5. Experimental results

5.1. Void fraction

Fig. 3 shows the void fraction profiles in the measurement sections a, b, c, for the different flow
conditions: jL ¼ 1:16 m=s and jG ¼ 2, 5 and 10 mm/s. Measurements were started at 1 mm from
the wall and continued up to the boundary of the bubble layer.
The vertical distributions of void fraction have some specific features. At about 1.2–1.3 mm

from the wall, the void fraction is maximum. Above this point it decreases asymptotically to zero

Table 1

Relative accuracy for the determination of the different liquid velocity components near the wall

Single probe (1) (%) Dual miniature probe (2) (%)

UL 3 0.2ffiffiffiffiffiffi
u02L

q
13 1

VL 31ffiffiffiffiffi
v02L

q
1

u0Lv
0
L 32

Fig. 3. Void fraction in various measurement sections: n jG ¼ 2 mm=s, h jG ¼ 5 mm=s, s jG ¼ 10 mm=s; boundary
of the bubble layer: - - - jG ¼ 2 mm=s, _____ jG ¼ 5 mm=s, jG ¼ 10 mm=s.
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at the outer edge of the bubble layer. Below this point, the tendency is not so clear due to the
difficulty in getting close to the wall.
As anticipated, the void fraction increases with the air flux near the porous wall. It increases

also with the distance x from the upstream edge of the porous plate. The bubble layer develops
downstream as would be the case with a thermal layer over a heated plate under the effect of
turbulent diffusion and buoyancy. However, in the present case, some additional effects linked to
the forces acting on the bubbles are expected.

5.2. Bubble mean diameter

Fig. 4 shows the profiles of the bubble mean diameter DB for the different flow conditions. As in
the case of the void fraction, these profiles suggest the existence of two different sub-layers, an
inner layer in the vicinity of the wall where the bubble size grows due to the collision between
bubbles leading to coalescence, and an outer layer where the bubble diameter remains almost
constant.
In the inner layer, the measurement closest to the wall was performed at 1 mm. Here the bubble

diameter is about 0.3 mm for the smallest air flow rate ðjG ¼ 2 mm=sÞ. For higher flow rates, the
results are not conclusive because of the probable lack of accuracy in a region where the statistical
average varies greatly with the distance from the wall. The value of 0.3 mm is in accordance with
the bubble diameter at detachment measured by image processing of a high-speed video recording
taken at 6000 frames per second at small injection rate. It seems reasonable to believe that the
average diameter at bubble departure is close to this value and is almost independent of the global
injection rate. When the distance from the wall increases, the bubble diameter increases: the re-
sults show that this increase is all the more important as the void fraction is high. This confirms
the role of coalescence in the near-wall region where the probability of collision is promoted by
both turbulence and bubble density.

Fig. 4. Bubble mean diameter in various measurement sections: n jG ¼ 2 mm=s, h jG ¼ 5 mm=s, s jG ¼ 10 mm=s.
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In the outer layer the bubble diameter is almost constant. However, it increases with both gas
flux and distance from the upstream edge of the porous plate: for example, when jG ¼ 10 mm=s,
the mean bubble diameter goes from 1 to 1.3 mm and then to 1.5 mm in sections a, b, c. It is hard
to say if coalescence still occurs in the outer layer.

5.3. Mean velocity of the liquid

Velocity measurements were carried out with a single hot film probe, starting from a distance of
0.75 mm from the wall. In single-phase flow, this distance corresponds to yþ ¼ 45. They were also
performed with a dual hot film probe for jG ¼ 5 and 10 mm/s in section c starting from a distance
of 1 mm from the wall ðyþ ¼ 60Þ in single-phase flow and from a distance of 2 mm in two-phase
flow. Velocities are scaled by U0 ¼ 1:34� 0:06 m=s, the maximum value of the mean velocity
measured in two-phase flow.
Figs. 5–7 show the profiles of the mean longitudinal velocity UL measured with the single probe

for the three values of jG. The measurements in single-phase flow are also plotted in these figures.
It can be seen that the bubble injection has a very small influence on the mean velocity. Only near
the wall is this mean velocity smaller than in single-phase flow. This results from the momentum
exchange between phases. Due to this difference, the longitudinal velocity is slightly greater in the
central part of the channel. These small modifications have a particular consequence on the wall
law, as discussed in Section 6.4.

5.4. Mean velocity of the gas

In the same figures, the velocity profiles of the gas UG are plotted together with horizontal lines
that indicate the limit of the bubble layer d. The gas moves everywhere slower than the liquid.
Near the wall, the gas velocity is smallest and approximately 0.4–0.5 m/s. The velocity difference

Fig. 5. Mean velocity of liquid and gas in various measurement sections for jG ¼ 2 mm=s: M UG=U0, N UL=U0, _____
UL=U0 in single-phase flow.
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UL � UG can reach 0.2–0.3 m/s near the wall. When the distance to the wall increases the gas
velocity increases. However, the difference of velocities between phases remains significant over
the lower part of the bubble layer. The gas reaches the velocity of the liquid only in the axis of the
channel for the highest gas flow rate. In the x-direction, the velocity difference UL � UG decreases
with x. Although surprising it can be explained by the fact that both the local void fraction and the
turbulence of the liquid increase with x. Indeed, an increase of the void fraction, in vertical upward
flow, tends to diminish the slip velocity, due to hydrodynamics interactions (Kowe et al., 1988).
Moreover it has been shown that increase in turbulence tends to decrease the slip velocity in

Fig. 6. Mean velocity of liquid and gas in various measurement sections for jG ¼ 5 mm=s: � UG=U0, j UL=U0, _____
UL=U0 in single-phase flow.

Fig. 7. Mean velocity of liquid and gas in various measurement sections for jG ¼ 10 mm=s: � UG=U0,  UL=U0, _____
UL=U0 in single-phase flow.
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homogeneous, isotropic turbulence, both in numerical simulations (Spelt and Biesheuvel, 1997)
and in experiments (Eppinger, 1995; Poorte, 1998).

5.5. Turbulence of the liquid

Near the wall, since the bubble size is of the same order as the length scale of energy containing
eddies (� 0:4 mm at 1 mm from the porous plate), the presence of bubbles is expected to modify
the turbulence of the liquid phase. The experimental results plotted in Fig. 8 confirm that tur-

bulence is indeed modified within the bubble layer. The RMS velocity

ffiffiffiffiffiffi
u02L

q
is greater than in

single-phase flow and increases with void fraction. A similar conclusion can be drawn from the

vertical RMS velocity

ffiffiffiffiffi
v02L

q
plotted in Fig. 9(a) at section c.

The turbulent shear stress �qLu
0
Lv

0
L has also been measured in section c. As in single-phase flow,

its determination suffers from a lack of accuracy, due to the filtering effect of the X-array probe. It
was necessary to correct its value by using the correction function calibrated in single-phase flow
(see Section 4.1). This assumes that the signal filtering is the same as in single-phase flow. This
assumption would be correct if the spectral distribution of the turbulence energy was not modified
by the presence of bubbles: this is probably not the case. The correction can reach 60% of the
measured value for the point closest to the wall, it decreases as the distance from the wall in-
creases: at y=h ¼ 0:3, i.e. y ¼ 4 mm from the wall, the correction is less than 10%. The corrected
results are plotted in Fig. 9(b). For y=h > 0:4, the turbulent shear stress remains unchanged in the
presence of bubbles. Thus the shear stress is only modified in the lower part of the bubble layer:
ju0Lv0Lj seems to increase near the wall as the injection rate and the void fraction increase. The
different effects responsible for this modification will be analysed in the following section.

Fig. 8. RMS longitudinal velocity of liquid in various measurement sections: _____ jG ¼ 0 mm=s, M jG ¼ 2 mm=s, �
jG ¼ 5 mm=s, s jG ¼ 10 mm=s; boundary of the bubble layer: - - - jG ¼ 2 mm=s, –– jG ¼ 5 mm=s, jG ¼ 10 mm=s.

C. Gabillet et al. / International Journal of Multiphase Flow 28 (2002) 553–578 565



6. Discussion of the results

6.1. Preliminary remark

It was difficult experimentally to ensure a uniform gas flux throughout the porous wall. Even if
the homogeneity was checked with air alone, there is no guarantee of homogeneity when water
flows over the wall because capillary forces may prevent the gas from flowing through certain
pores. For each flow condition, the experimental results on gas velocity and void fraction are used
to check whether the air flux through the porous plate is the same between two consecutive
measurement sections. Using mass conservation between the sections located at x1 and x2 and
assuming that the flow is homogeneous in the spanwise direction, we obtainZ 2h

0

aUG dy
� �x2

x1

¼
Z x2

x1

jG dx: ð6Þ

The above equation expresses the fact that the air flow rate flowing in the channel between sec-
tions x1 and x2 equals the flow rate injected through the plate in-between. The results are given in
Table 2. However, only between sections b and c was the homogeneity acceptable: the porous
plate did not properly inject air bubbles between sections a and b. This remark must be kept in
mind in the discussion of the results.

6.2. Development of the bubble layer

The bubble layer thickness has been characterised by superimposing the void fraction profiles
according to the following equation:

Fig. 9. (a) RMS vertical velocity and (b) turbulent shear stress of liquid in section c: for _____ jG ¼ 0 mm=s,
� jG ¼ 5 mm=s, s jG ¼ 10 mm=s; boundary of the bubble layer: –– jG ¼ 5 mm=s, jG ¼ 10 mm=s.

Table 2

Homogeneity of the air injection between sections b and c

jG (mm/s) 2 5 10

qG ðmm3=sÞ calculated from the RHS of Eq. (6) 124 310 620

qG ðmm3=sÞ determined from the LHS of Eq. (6) 115 246 634
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a ¼ a0f
y
d

	 

; ð7Þ

where d is a bubble layer thickness and a0 a characteristic void fraction near the porous plate that
depends on x and jG. They can be determined with a relative accuracy of �14% and �20%, re-
spectively. The results are plotted in Fig. 10(a). They are well grouped for sections b and c and for
jG ¼ 5 and 10 mm/s.
It must be pointed out that Eq. (7) expresses the self-similarity of the void fraction evolution.

However, for a to be self-similar, all the kinematic variables must be self-similar too. Obviously,
UL does not fulfil this condition so there is no reason why a should be self-similar. The method
was only used to determine the bubble layer thickness with an objective criterion.
The evolution of the bubble layer thickness d with respect to the longitudinal distance x is

plotted in Fig. 10(b). It is interesting that d expands almost linearly with x, both thickness and rate
of expansion increasing with the air flux.
To understand the development of the bubble layer it is necessary to underscore the specific role

of each force acting on the bubbles. Let us consider a simple model in which the influence of both
turbulence and interaction between bubbles is ignored. The role of turbulence will be discussed
later. As the void fraction is weak almost everywhere, the neglect of bubble interactions is ac-
ceptable. The experimental results show that the liquid flow can be considered fully developed.
For simplicity the bubble diameter is assumed constant. Within this framework, the equation of
the motion of an isolated spherical bubble of diameter dB and velocity uB is expressed by

CD
pd2B
4

qL
ðuL � uBÞjuL � uBj

2
þ pd3B
6

qL CLðuL
�

� uBÞ ^ XL � CA
duB
dt

� g

�
¼ 0; ð8Þ

where uL and XL are the velocity and vorticity of the liquid. As qG � qL, the bubble inertia is
neglected. The LHS is the sum of the drag, lift, added mass and buoyancy forces. Unfortunately,
the values of the lift and drag coefficients are unknown for spherical bubbles moving near a wall.
These coefficients are thus taken equal to their value in an unbounded medium. The lift and added

Fig. 10. (a) Self-similarity of void fraction: section b: j jG ¼ 5 mm=s, d jG ¼ 10 mm=s; section c: h jG ¼ 5 mm=s, s
jG ¼ 10 mm=s. (b) Evolution of bubble layer thickness: n jG ¼ 2 mm=s, h jG ¼ 5 mm=s, s jG ¼ 10 mm=s, linear

best fit, _____ numerical predictions of Eqs. (12) and (13).
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mass coefficients CL and CA are kept equal to their standard value of 0.5, appropriate for the range
of bubble Reynolds numbers in our experiment ðReB ¼ juL � uBjdB=mL � 50–200Þ. The drag co-
efficient is written for convenience in the form CD ¼ k=ReB, where k is itself a function of ReB. For
the values of ReB under consideration, the terminal velocity correlation of Peebles and Garber
(1953) was used for the determination of CD, because it agrees with experimental results for tap
water (Maxworthy et al., 1996). With an adjustment to get a fractional power of the Reynolds
number, it can be expressed as CD ¼ 17Re�2=3B . Finally the longitudinal and vertical components
of the momentum equation can be written as follows:

CA
duB
dt

¼ 3k
4

mL
d2B

ðUL � uBÞ þ CLvB
dUL
dy

; ð9Þ

CA
dvB
dt

¼ � 3k
4

mL
d2B

vB þ g þ CL ULð � uBÞ
dUL
dy

: ð10Þ

They show the role of the different forces acting on the bubbles. At the start of its trajectory, the
bubble is in the high vorticity region near the wall. As the bubble separates from the wall, the
horizontal component of its velocity, uB, increases because of the drag exerted by the liquid (Eq.
(9)). As soon as the vertical velocity component becomes significant, the lift force reinforces the
drag effect to reduce the velocity difference uB � UL between gas and liquid. As UL � uB is positive,
the vertical component of the lift force is positive too: it has the same effect as buoyancy to in-
crease the vertical velocity (Eq. (10)). Later, far from the wall, the velocity gradient decreases and
so does the lift force: both drag and buoyancy become dominant. The bubble velocity reaches an
asymptotic value: its horizontal component tends to UL and its vertical component, to the ter-
minal velocity v1:

v1 ¼ 0:15g3=4d5=4B m�1=2L ; ð11Þ
that results from a balance between drag and buoyancy. Keeping in mind that UL depends only on
y, then uB and vB are invariant under longitudinal translation.
Thus we now consider the y-distribution of the velocity components. Eqs. (9) and (10) are put in

dimensionless form by scaling the horizontal velocities by the maximum liquid velocity in the
single-phase flow U0, the vertical velocity by the terminal bubble velocity v1 and the vertical co-
ordinate by the half-height h of the channel. Since vB dt ¼ dy, the time can be replaced by the
vertical co-ordinate and Eqs. (9) and (10) become

FrB~vvB
d

d~yy
ð ~UUL � ~uuBÞ ¼ �2ð ~UUL � ~uuBÞ; ð12Þ

FrB~vvB
d

d~yy
~vvB ¼ 2ð1� ~vvBÞ þ Nð ~UUL � ~uuBÞ

1

j~yy
; ð13Þ

where the added mass and lift coefficients are replaced by their numerical values and the liquid
velocity is expressed by the logarithmic defect law UL ¼ U0 þ ðu�=jÞ lnðy=hÞ, in which j ¼ 0:41
is the von Karman constant. The governing equations of the bubble motion reduce to a set of
differential equations whose solution gives the relative bubble velocity. This relative motion is
controlled by two dimensionless numbers: N ¼ U0u�=gh which is similar to a Froude number and
FrB ¼ v21=gh which is a Froude number associated with the terminal bubble velocity. In our ex-
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periment, N ¼ 0:8. In contrast FrB takes different values for the various flow conditions because
v1 changes with the bubble diameter. This suggests that coalescence in the near-wall region plays
a dominant role in the development of the bubble layer.
To get a qualitative idea of the bubble motion, the bubble velocity is determined from a nu-

merical solution of Eqs. (12) and (13) for different values of FrB, with the initial condition uB ¼ 0
at bubble departure, i.e. at y ¼ dB=2. The results make it possible to identify the region in which
the bubble has reached its asymptotic behaviour ðuB ¼ UL; vB ¼ v1Þ. The evolution of the
thickness D of this region is plotted in Fig. 11(a). It turns out that the dimensionless thickness D=h
grows linearly with the bubble Froude number FrB. The distribution of velocity components is
plotted in Fig. 11(b) versus y=D for two extreme values of FrB corresponding to dB ¼ 0:5 and 1.15
mm: uB � UL appears to be nearly independent of FrB whereas vB � v1 is more sensitive to the
initial conditions that are taken at y ¼ dB=2. The bubbles reach y ¼ D very quickly and, for each
case under investigation, before they reach the channel axis. The vertical velocity increases with
the distance and reaches a maximum located around y=D ¼ 0:2. The maximum velocity vB;max can
be two to five times as high as the terminal velocity v1 depending on the bubble size. This effect is
due to the efficiency of the lift force to increase the vertical bubble velocity. For y=D greater than
0.2, the vertical velocity decreases. The horizontal component of the relative velocity decreases
monotonously with the distance. When the bubble reaches the limit of the layer y ¼ D, uB ¼ UL
and vB ¼ v1 and the trajectory becomes almost linear since UL is nearly constant. The layer of
thickness D will be referred to as the ‘‘inertia-dominated’’ region since the added mass and lift
forces play a significant role. It spreads out as the square of the terminal velocity. Outside this
layer, the bubble moves in the ‘‘drag-dominated’’ region.
The model can be used to understand the development of the bubble layer. If turbulent dis-

persion is ignored the bubbles at the bubble layer boundary are those which are issued from the
upstream edge of the porous plate. It is possible to determine the trajectory of these bubbles
starting from their initial position at ðx ¼ 0; y ¼ dB=2Þ. For each flow condition, a value of dB can
be chosen so that the bubble trajectory best fits the bubble layer boundary. The selected values are
in the range of the measured mean diameters (see Table 3), in particular for the most reliable

Fig. 11. (a) Development of the inertia-dominated layer. (b) Longitudinal and vertical bubble velocity as calculated

from Eqs. (12) and (13): ðuB � ULÞ=U0 for: –h– FrB ¼ 0:25, –s– FrB ¼ 0:03; ðvB � v1Þ=U0 for: –j– FrB ¼ 0:25, –d–
FrB ¼ 0:03.

C. Gabillet et al. / International Journal of Multiphase Flow 28 (2002) 553–578 569



results of jG ¼ 10 mm=s. The trajectories are superimposed in Fig. 10(b). For each flow condition
one specific trajectory is plotted. At departure, the bubble moves almost vertically due to the
strong effect of the y-component of the lift force. In the ‘‘inertia-dominated’’ region, the bubble
trajectory curves downstream and becomes almost linear and asymptotic to the bubble boundary
in the ‘‘drag-dominated’’ region.
The linear behaviour of the bubble layer thickness is thus linked to the trajectory of the bubbles

in the ‘‘drag-dominated region’’. Indeed the mass balance equation for steady flow,

adivuG þ uG � grada ¼ 0; ð14Þ

shows that, close to the bubble boundary, uG and grada are orthogonal, since the first term
vanishes with a. Thus the bubble layer boundary is also a streamline of the mean gas flow. As
suggested by the result of Fig. 10(b), uG has a fixed direction for each flow condition. In the ‘‘drag-
dominated’’ region, vB=uB is nearly constant for a bubble of given diameter since vB ¼ v1 and
uB ¼ UL � U0. By using Eq. (11), it can be seen that the bubble layer develops as

dd
dx

¼ 0:15 g
3=4d5=4B
m1=2L UL

; ð15Þ

in the ‘‘drag-dominated region’’, i.e. if d > D. This reveals the sensitivity of the development of the
bubble layer to the flow conditions and to the bubble diameter. It is rather surprising that d does
not depend on the gas flux jG. However, it must be kept in mind that the bubble diameter at
departure depends on jG so that the bubble layer indirectly depends on the gas flux.
Let us now discuss the influence of the turbulence on the bubble motion at the boundary of the

bubble layer. To analyse the capture of the bubbles by the turbulent eddies, three time scales must
be considered (Spelt and Biesheuvel, 1997):

• the response time of the bubbles tr ¼ 2d2B=3kCMmL (with k ¼ CdReB),
• the characteristic time scale of the largest eddies te ¼ le=u0L,
• the interaction time of a bubble with a large eddy ti ¼ le=v12g (v1 being the bubble terminal
velocity).

In our case an additional time scale can be defined: the time required for a bubble to reach the
boundary of the bubble layer td ¼ d=v1.
For bubbles with a diameter of about 0.8 mm, tr � 10 ms, te � 60 ms, ti � 30 ms and td < 10

ms. The response time tr is shorter then the time scale te of the largest eddies, but longer then the
interaction time ti of the bubble with the turbulent structures. Furthermore the time for the

Table 3

Characteristics of the bubbles moving at the bubble layer edge

jG ¼ 2 mm=s jG ¼ 5 mm=s jG ¼ 10 mm=s
DB (mm) from experiments 0.3–0.5 0.6–1.1 1–1.5

dB (mm) used in the model (Eqs. (9) and (10)) 0.50 0.80 1.15

v1 (cm/s) from Eq. (11) 6.1 11.0 17.4

D (mm) from the model (Eqs. (9) and (10)) 2.05 4.7 10
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bubbles to reach the bubble layer boundary is very short td < 10 ms, and the turbulence is not
expected to affect the bubble trajectories at these short time scales.

6.3. Modification of the wall shear stress

Before discussing how the bubble motion modifies the mean velocity and the turbulent kinetic
energy, it is necessary to understand the mechanism that controls the modification of the shear
stress in the bubble layer and at the wall. Let st be the total shear stress defined as the sum of the
viscous and the turbulent shear stresses:

st ¼ qL mL
dUL
dy


� u0Lv

0
L

�
: ð16Þ

Except in the viscous sub-layer, the total shear stress is dominated by the turbulent shear stress.
It is shown in Fig. 9(b) that st increases in the bubble layer near the wall. However, the mea-
sured values of u0Lv

0
L is uncertain due to the filtering effect of the probe in the near-wall region.

Therefore, the validity of the measured distribution has to be confirmed. This was done theo-
retically from the mixture momentum equation in which st appears beside other terms containing
velocity and pressure. Since the bubble layer behaves as a boundary layer, an asymptotic method
can be used to simplify the momentum equation. The details of the assumptions and analytical
development are given in the Appendix A. It is shown that the shear stress stðx; yÞ in the liquid
phase is deduced from the following approximate momentum balance:

ð1� aÞst � st0 � qLg
Z y

d

o

ox

Z y

d
ady

� �
dy: ð17Þ

Here, st0ðx; yÞ is the shear stress that would exist in a single-phase flow of identical pressure
gradient. Eq. (17) shows that the modification of the shear stress is mainly due to buoyancy.
Indeed, as inertia has only a marginal effect, the x-momentum balance reduces to a competition
between the wall friction and the pressure difference in the x-direction. It may be easily understood
that the pressure difference is greater in two-phase flow. Indeed, if the pressure gradient is the
same as in single-phase flow at the upper wall, it becomes greater at the lower wall because
the presence of bubbles reduces the pressure difference between the upper and lower walls. To
compensate for this additional pressure difference, the wall shear stress at the lower wall has to be
greater.
Eq. (17) may be simplified by assuming that the void fraction follows the self-similar distri-

bution given by Eq. (7). It yields

ð1� aÞst � st0 � qLgd
d

dx
ða0dÞ

Z 1

g

Z 1

n
f ðfÞdfdn; ð18Þ

where st is a function of both x and g ¼ y=d. Eq. (18) is compared to the experimental results
in Fig. 12(a). It gives a good estimate of the y-distribution of st although there is a tendency to
slightly overestimate its values. With this theory, the wall shear stress increases when bubbles are
injected at the wall and thus the friction velocity can be expressed as
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d
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Z 1

0

Z 1

0

f ðfÞdfdn
� �s

: ð19Þ

6.4. Modification of the logarithmic law

As mentioned before, the mean velocity in two-phase flow is nearly the same as in single-phase
flow. Therefore, it is relevant to check the validity of the logarithmic law. With the values of the
friction velocity experimentally determined and reported in Table 4 for each flow condition,
the dimensionless velocity profile ULþ ¼ UL=u� has been plotted in Fig. 12(b) versus yþ ¼ yu�=m.
The log-law

ULþ ¼ 1
j
lnðyþÞ þ B ð20Þ

remains clearly valid in a two-phase flow with the same value of the von Karman constant j. Its
validity suggests that the equilibrium between production and dissipation rates of turbulence
persists even in the presence of bubbles in the buffer layer.

Table 4

Friction velocity and logarithmic law coefficients

Section c jG ¼ 0 mm=s jG ¼ 5 mm=s jG ¼ 10 mm=s
Liquid flux, jL (m/s) 1.16 1.16 1.16

Cross-sectional averaged void fraction (%) 0 1.9 5.4

Friction velocity, u� (m/s) 0.058 0.069 0.094

Constant B in the log-law 5 2.3 )2.2
Roughness Reynolds no. k, Rek (see Eq. 21) 26 80

Apparent roughness, kB (mm) 0.37 0.86

Fig. 12. (a) Shear stress for jG ¼ 10 mm=s in section c: � turbulent shear stress, _____ total shear stress deduced from
Eq. (18). (b) Logarithmic laws for the liquid velocity in section c: r jG ¼ 0 mm=s, � jG ¼ 5 mm=s, s jG ¼ 10 mm=s,
Eq. (20) with: _____ u� ¼ 0:058 mm=s and B ¼ 5, - - - u� ¼ 0:069 mm=s and B ¼ 2:3, – – – u� ¼ 0:094 mm=s and
B ¼ �2:2.
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Nevertheless, the constant B decreases with increasing gas flux as shown in Table 4. A similar
behaviour is observed in single-phase flow over a rough surface: when the roughness increases the
constant B decreases and is given as a function of the roughness height kB by (Ligrani and Moffat,
1986)

B ¼ 8:5� 1
j
lnðRekÞ for Rek ¼

kBu�
m

> 55; ð21Þ

B ¼ 5þ 3:5

�
� 1

j
lnðRekÞ

�
sin

p
2

lnðRek=15Þ
lnð55=15Þ

� �
for 11 < Rek < 55: ð22Þ

As the bubble diameter increases with the gas flux, this suggests that the bubbles, before they
detach from the wall, are viewed by the liquid flow as roughness elements. An equivalent bubble
roughness kB can be estimated for each flow condition by using the experimental value of the
additive constant B. Eq. (22) is used for jG ¼ 5 mm=s, whereas Eq. (21) is used for jG ¼ 10 mm=s.
The results are given in Table 4. The calculated values are, broadly speaking, in accordance with
the measured bubble diameter near the wall.
In upward bubbly flow, the modification of the constant B was also demonstrated by Moursali

et al. (1995). In contrast to the present study, they noted that B increases with the void fraction as
the consequence of the increase of the velocity in the logarithmic region. Indeed, there is no reason
to expect the same behaviour when bubbles are injected at the pipe inlet of a vertical flow.

6.5. Additional turbulence

The results of Figs. 8 and 9(a) show that the turbulence intensity is greater than in single-phase
flow wherever the bubbles are present. This additional turbulent kinetic energy (TKE) is strictly
limited to the bubble layer. It may originate either from a modification of the turbulence pro-
duction by the work of stress against the strain rate or from the relative motion of bubbles.
The first conjecture can be checked by plotting the turbulence production in the liquid. In our

experiment, the gradients with respect to x are negligible so that the turbulence production per
unit mass, PL, may be expressed by

PL ¼ �u0Lv
0
L

oUL
oy

: ð23Þ

By using the experimental values of both liquid velocity and turbulent shear stress, PL may be
calculated. Its y-distribution is plotted in Fig. 13(a) for both single-phase and two-phase flow and
compared to the theoretical profile deduced from the logarithmic law:

PL ¼
u3�
jy
1

	
� y
h



: ð24Þ

As a result one observes that the turbulence production is slightly greater in two-phase flow, but
this is insufficient to explain the additional turbulence, observed in Figs. 8 and 9.
To check the second conjecture, we determined the excess of the longitudinal and vertical

contributions of the TKE, u02b ¼ u02L � u02L0 and v02b ¼ v02L � v02L0, where u
02
L0 and v02L0 are the corre-

sponding values in single-phase flow. They are plotted in Fig. 13(b) versus the void fraction a. It
can be seen that both u02b and v

02
b are proportional to a whatever the gas flux and the distance from
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the wall. Last but not least, the excess of energy is not isotropic. The x-contribution to the tur-
bulence energy u02b is nearly twice as great as v

02
b . This is certainly due to the fact that this additional

turbulence is mainly controlled by the drift velocity of bubbles which is nearly parallel to the wall.
In fact, near the wall v02b =u

02
b is constant and roughly equal to 0.4, smaller than the ratio 0.75

obtained for bubble-induced turbulence in potential flow theory (Biesheuvel and van Wijngaar-
den, 1984), but closer to the value for the shear-induced turbulence. Nevertheless, the present
results suggest that the additional turbulence is produced by both bubble relative motion and
shear-induced turbulence. 1 The process of injection at the wall does not contribute to any dis-
cernible effect.

7. Conclusion

An experiment simulating the dynamic effect of convective boiling in a horizontal channel
has been performed. Bubble nucleation was simulated by gas injection through a porous plate
located on the lower wall. Small air bubbles of the same size as vapour bubbles encountered in
subcooled boiling were generated. They formed a bubble layer that developed in the liquid flow.
The structure of this layer has been characterised by measuring both velocity and turbulence of
the liquid with hot film probes, and by measuring void fraction, gas velocity and bubble diameter

1 However, an additional turbulence is also observed for jG ¼ 10 mm=s near the channel axis in section c, in a region
where the void fraction and the bubble drift velocity are low. For all the runs, other than this, the bubble-induced

turbulence is produced in the near-wall region, where a local equilibrium exists between production and dissipation and

where the turbulence diffusion does not affect the balance. For jG ¼ 10 mm=s, in section c, the local void fraction and
the slip velocity are significant outside the near-wall region, and this additional turbulence is expected to diffuse toward

the axis where it accumulates. This mechanism could explain the additional turbulence observed near the channel axis

for jG ¼ 10 mm=s in Figs. 8 and 9.

Fig. 13. (a) Production of turbulent kinetic energy in section c for d jG ¼ 0 mm=s, h jG ¼ 5 mm=s, s jG ¼ 10 mm=s,
_____ Eq. (24). (b) Additional contributions to the turbulent kinetic energy in section c: u02B=U

2
0 for h jG ¼ 5 mm=s,

s jG ¼ 10 mm=s; v02B=U 20 for j jG ¼ 5 mm=s, d jG ¼ 10 mm=s.
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with optical probes. This is an interesting example of developing flow in which the lift force plays
a specific role: it reinforces the role of buoyancy in moving the bubbles away from the lower wall.
The first noticeable result concerns the bubble layer. Its linear expansion is found experi-

mentally and reproduced theoretically with a simple model that reveals the existence of two
regions: a near-wall ‘‘inertia-dominated’’ region in which both lift force and coalescence play a
dominant role and a ‘‘drag-dominated’’ region where bubbles have already been put in motion
by the liquid. This model also shows that the expansion rate essentially depends on the bubble
diameter. The quasi-self-similarity of the void fraction profile is also observed experimentally.
The second result concerns the modification of the liquid velocity and turbulence by the bubble

injection. The mean velocity is nearly the same as in single-phase flow, except near the wall where
the shear stress is greater than in single-phase flow. The log-law remains valid and the liquid flow
behaves as over a rough surface. It is seen that the calculated roughness deduced from the velocity
profile is correlated to the bubble diameter at departure from the wall. Another difference with
single-phase flow lies in the turbulent kinetic energy. An additional turbulent energy, almost
linearly correlated with the void fraction, has been highlighted. It appears to be strongly aniso-
tropic. It results from two combining effects: bubble-induced turbulence and shear-induced tur-
bulence.
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Appendix A

The determination of the evolution of the turbulent shear stress starts from the momentum
balance of the gas–liquid mixture. By neglecting the mean and turbulent contributions of the gas
inertia and the viscous stresses and by assuming that the phase averaged pressure is the same in
both phases, the two projections of this equation read

ð1� aÞ UL
oUL
ox

þ VL
oUL
oy

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðeÞ

¼ � 1
qL

oP
ox|fflffl{zfflffl}

ð1Þ

� o

ox
ð1� aÞu02L
h i

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ðeÞ

� o

oy
ð1� aÞu0Lv0L
h i

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
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ox
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oVL
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� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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ð1Þ
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ð1� aÞu0Lv0L
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|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
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� o
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ð1� aÞv02L
h i

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ðeÞ

� ð1� aÞg|fflfflfflfflffl{zfflfflfflfflffl}
ðeÞ

: ðA:1Þ

The development of the bubble layer is similar to the development of a 2D boundary layer. Thus
the small parameter e that compares the velocity gradients in the longitudinal and in the vertical
directions can be introduced. By considering the continuity equation, the boundary layer
assumption implies that the liquid flow is quasi-parallel. This assumption has been verified
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experimentally. The mean and RMS velocities, the pressure and both longitudinal and vertical
coordinates are scaled as follows:

UL ¼ U0 ~UUL; VL ¼ eU0 ~VVL; u02L ¼ u2�~uu
02
L ; v02L ¼ u2�~vv

02
L ; P ¼ qLU

2
0

~PP
e
; x ¼ d~xx

e
;

y ¼ dg; e ¼ dd
dx

; ðA:2Þ

where dimensionless quantities are denoted by �. By using these quantities, Eqs. (A.1) can be
written in dimensionless form. Thus the order of the different terms of the momentum balance can
be determined as shown in Eqs. (A.1).
At order e, the integration of the second of Eqs. (A.1) along the vertical axis gives the vertical

pressure distribution

P ¼ P ðdÞ þ qLv
02
L

h i
y¼d

� qLð1� aÞv02L �
Z y

d
qLð1� aÞgdy: ðA:3Þ

At the upper boundary of the bubble layer, the mean and RMS velocity components and the
longitudinal pressure gradient remain the same as in single-phase flow. By using Eq. (A.3), the
momentum balance in the longitudinal direction can be integrated along y. At order e, the shear
stress st is

st � 1

1� a
stðdÞ þ dP

dx
þ d
dx

qLv
2
L

	 

y¼d

 �
ðy � dÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I ð1Þ

� 1

1� a

Z y0

d

o

ox

Z y

d
ð1� aÞqLgdy 0

� �� �
dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II ðeÞ

þ 1

1� a

Z y

d
ð1� aÞUL

oUL
ox

� �
dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

III ðeÞ

þ 1

1� a

Z y

d
ð1� aÞVL

oUL
oy

� �
dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

IV ðeÞ

� 1

1� a

Z y

d
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ox
ð1� aÞv02L
h i

dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V ðeÞ

þ 1

1� a

Z y

d

o

ox
ð1� aÞu02L
h i

dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
VI ðeÞ

: ðA:4Þ

As a consequence of the horizontal geometry, the turbulent shear stress appears to be con-
trolled, to leading order, by the pressure gradient (I). The other terms of (A.4) are of order e. The
buoyancy term (II) contributes to increase the vertical gradient of the turbulent shear stress and
thus increases the stress near the wall, but its contribution is of order e, i.e. smaller than it should
be in a vertical flow (order 1). In a horizontal developing bubble layer, the buoyancy term cannot
be considered without taking care of the contribution of the mean liquid velocity gradients
ðIIIÞ þ ðIVÞ and of the contribution of the longitudinal gradient of the normal turbulent stresses
ðVÞ þ ðVIÞ.
The shear stress is calculated in section c from Eq. (A.4) by using the measured values of a, the

values of UL measured in two-phase flow, the values of u02L measured in sections b and c, the values
of v02L measured in section c and the numerical solution for VL deduced from the continuity
equation and the values of UL. The results show (Gabillet, 1998) that among the contributions of
order e, the buoyancy (II) is likely to be the only relevant contribution. Indeed, not only are the

576 C. Gabillet et al. / International Journal of Multiphase Flow 28 (2002) 553–578



contributions of the normal turbulent stresses (V and VI) negligible, but also the two terms (III
and IV) balance each other.
Then the following expression can be used to estimate the shear stress inside the bubble layer:

ð1� aÞstðyÞ � stðdÞ þ d
dx

P
h

þ qLv02L
i
y¼d

ðy � dÞ �
Z y

d

o

ox

Z y 0

d
ð1

"(
� aÞqLgdy 0

��
dy: ðA:5Þ

Since the RMS velocities are the same as in a single-phase flow, at the bubble layer edge, the shear
stress can be expressed versus the shear stress st0 that would exist in single-phase flow for the same
pressure gradient:

ð1� aÞstðyÞ � st0ðyÞ ¼ qLg
Z y

d

o

ox

Z y0

d
ady 00

" #( )
dy0: ðA:6Þ
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